ఇంటర్నేషనల్ జర్నల్ ఆఫ్ డ్రగ్ డెవలప్‌మెంట్ అండ్ రీసెర్చ్

  • ISSN: 0975-9344
  • జర్నల్ హెచ్-ఇండెక్స్: 44
  • జర్నల్ సిట్ స్కోర్: 59.93
  • జర్నల్ ఇంపాక్ట్ ఫ్యాక్టర్: 48.80
ఇండెక్స్ చేయబడింది
  • జెనామిక్స్ జర్నల్‌సీక్
  • చైనా నేషనల్ నాలెడ్జ్ ఇన్‌ఫ్రాస్ట్రక్చర్ (CNKI)
  • CiteFactor
  • స్కిమాగో
  • రీసెర్చ్ జర్నల్ ఇండెక్సింగ్ డైరెక్టరీ (DRJI)
  • OCLC- వరల్డ్ క్యాట్
  • పబ్లోన్స్
  • మియార్
  • యూనివర్సిటీ గ్రాంట్స్ కమిషన్
  • యూరో పబ్
  • గూగుల్ స్కాలర్
  • షెర్పా రోమియో
  • రహస్య శోధన ఇంజిన్ ల్యాబ్‌లు
  • రీసెర్చ్ గేట్
ఈ పేజీని భాగస్వామ్యం చేయండి

నైరూప్య

QSAR Modelling of PDE5 Inhibitory Activity of Tetracyclic Guanine Derivatives as Antihypertensive Agents

Anupama Mittal, Mukta Sharma and Aarti Singh

A linear and non-linear quantitative structure-activity relationship (QSAR) study is presented for modelling and predicting PDE5 inhibitory activity. A data set consisted of 32 derivatives of tetracyclic guanine was used in this study. Statistical analysis techniques, such as Multiple Linear Regression (MLR), Partial Least-Squares (PLS) Regression and Neural Network (NN) were carried out to calibrate and validate QSAR model. Leave one out method was used to get stable MLR-QSAR with high predictivity: r=0.92, r2=0.85, r2 cv=0.75 and comparable value of cross validated correlation coefficient r2cv=0.78 of PLS in order to predict the robustness of the model. The results obtained by forward feed neural network explained the effect of electronic, hydrophobic and topological descriptors on the biological activity.

నిరాకరణ: ఈ సారాంశం ఆర్టిఫిషియల్ ఇంటెలిజెన్స్ టూల్స్ ఉపయోగించి అనువదించబడింది మరియు ఇంకా సమీక్షించబడలేదు లేదా నిర్ధారించబడలేదు