జర్నల్ ఆఫ్ న్యూరాలజీ అండ్ న్యూరోసైన్స్

  • ISSN: 2171-6625
  • జర్నల్ హెచ్-ఇండెక్స్: 17
  • జర్నల్ సిట్ స్కోర్: 4.43
  • జర్నల్ ఇంపాక్ట్ ఫ్యాక్టర్: 3.38
ఇండెక్స్ చేయబడింది
  • J గేట్ తెరవండి
  • జెనామిక్స్ జర్నల్‌సీక్
  • గ్లోబల్ ఇంపాక్ట్ ఫ్యాక్టర్ (GIF)
  • చైనా నేషనల్ నాలెడ్జ్ ఇన్‌ఫ్రాస్ట్రక్చర్ (CNKI)
  • రీసెర్చ్ జర్నల్ ఇండెక్సింగ్ డైరెక్టరీ (DRJI)
  • OCLC- వరల్డ్ క్యాట్
  • ప్రాక్వెస్ట్ సమన్లు
  • సైంటిఫిక్ జర్నల్ ఇంపాక్ట్ ఫ్యాక్టర్ (SJIF)
  • యూరో పబ్
  • గూగుల్ స్కాలర్
  • రహస్య శోధన ఇంజిన్ ల్యాబ్‌లు
ఈ పేజీని భాగస్వామ్యం చేయండి

నైరూప్య

An Adaptive Recovery Method in Compressed Sensing of Extracellular Neural Recording

Hicham Semmaoui,Saied HK, Martinez-Trujillo JC, Nan Li, Mohamad Sawan

A novel adaptive recovery method in the emerging compressed sensing theory is described and applied to extracellular neural recordings in order to reduce data rate in wireless neural recording systems. To strike a balance between high compression ratio and high spike reconstruction quality, a novel method that employs a group-sparsity recovery algorithm, prior information about the input neural signal, learning prior supports of spikes, and a matched wavelet technique is introduced. Our simulation results, using four different sets of real extracellular recordings from four distinct neural sources, show that our proposed method is effective, viable, and outperforms the state-of-the-art compressed sensing-based methods, in particular, when the number of the measurement is two times of the sparsity.

నిరాకరణ: ఈ సారాంశం ఆర్టిఫిషియల్ ఇంటెలిజెన్స్ టూల్స్ ఉపయోగించి అనువదించబడింది మరియు ఇంకా సమీక్షించబడలేదు లేదా నిర్ధారించబడలేదు